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Abstract. Conditions are established under which a system of hydrodynamic-type equations
with time-dependent coefficients allows an infinite-dimensional group of hydrodynamic-type
symmetries. When this group exists it is used to linearize and solve the original system.

1. Introduction

The purpose of this paper is to apply Lie group theory to solve certain classes of quasilinear
systems of first-order partial differential equations. The equations we study are a subclass of
equations that have been called ‘equations of the hydrodynamic type’ [1–5].

The general form of such equations is

uit =
p∑

j=1

n∑
α=1

viα(u
1, . . . , un, t, x1, . . . , xp)u

α
xj

+ Bi(u1, . . . , un, t, x1, . . . , xp)

1 � i � n. (1.1)

In the bulk of this paper we restrict ourselves to the case p = 1, Bi = 0, though some results
for arbitrary p are presented. We also show that in certain cases inhomogeneous systems
(B �= 0), can be reduced to homogeneous ones. The number n of dependent functions ui(�x, t)
is arbitrary in all cases and the coefficients viα are explicitly space and time dependent.

An extensive literature exists on hydrodynamic-type equations [1–14]. Originally,
Dubrovin and Novikov called ‘systems of hydrodynamic type’ quasilinear systems of first-
order partial differential equations which possessed a Hamiltonian structure [1, 2]. Here we
study a more general class of hydrodynamic-type equations which are quasilinear systems of
first-order partial differential equations ‘rich in symmetries’ [3–5]. As a consequence of this
last property they admit exact linearization and infinite series of their exact solutions can be
constructed. Thus they have integrability properties which are as good as those of Hamiltonian
equations. Hydrodynamic-type systems describe various physical phenomena: gas dynamics,
hydrodynamics and magnetohydrodynamics [15–19], nonlinear elasticity, plasticity and phase-
transition models [20, 21], chromatography and electrophoresis equations from physical
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chemistry and biology [22, 23]. Another class of applications is obtained by a representation of
physically interesting higher-order equations as integrability conditions of hydrodynamic-type
systems. These include, in particular, the Euler and Poisson equations of nonlinear acoustics
[24], the Born–Infeld equation of nonlinear electrodynamics [25] and systems of relativistic-
string equations [26]. Modern applications of hydrodynamic-type systems arise in the theory
of averaging nonlinear soliton equations [2, 4, 14].

In section 2 we concentrate on hydrodynamic-type equations with one space variable
and an explicit time dependence in the coefficients. We establish the conditions under
which these equations have an infinite set of ‘hydrodynamic symmetries’. These are
represented by flows, commuting with those of the equations under study. The flows depend
linearly on the space derivatives uix , but they do not, in general, correspond to Lie point
symmetries. Once the existence conditions are satisfied, we obtain determining equations
for the symmetries. To obtain these symmetries explicitly we must solve a system of linear
first-order partial differential equations. Formulae for the corresponding invariant solutions
amount to a linearizing transformation. The solution of the nonlinear hydrodynamic-type
equations is reduced to the problem of solving a system of linear equations. The explicit
linearizing transformation is given in section 3. The method presented in sections 2 and 3
is a generalization of the method suggested by Tsarev [3, 4] to the case of time-dependent
coefficients.

Section 4 is devoted to the construction of first- and second-order recursion operators.
These operators transform solutions of the linear system amongst each other. They are used
in section 5 to generate an infinite series of solutions of the linear system and hence of the
nonlinear hydrodynamic equations themselves. Some preliminary results in this direction were
obtained earlier by one of the authors [7–11].

A specific example when the entire procedure works explicitly is treated in section 6. In
section 7 we show how an inhomogeneous system can be reduced to a homogeneous one.
Finally, in section 8 we discuss hydrodynamic-type equations with n space variables and relate
Lie symmetry methods to the method of Riemann waves [15–17, 19, 27].

2. Hydrodynamic equations with one space variable

2.1. Hydrodynamic flows and a generalized concept of symmetry

In this section we discuss then-component homogeneous quasilinear strictly hyperbolic system
of first-order partial differential equations with one time (t) and one space (x) variable and n

fields u = (u1, . . . , un). We assume that the system is diagonalizable and may depend on t

explicitly. We consider it in the diagonal form

uit = vi(u, t)u
i
x i = 1, 2, . . . , n n � 3 (2.1)

Here and subsequently the subscripts t, x and ui denote partial derivatives with respect to
these indices. All summations will be shown explicitly. In particular, there is no summation
over i in equation (2.1). The condition for the system (2.1) to be strictly hyperbolic means
the non-degeneracy of its spectrum vi �= vj for i �= j . We search for hydrodynamic flows
commuting with the flow determined by the original system (2.1). This means that the flows
we are searching for are also determined by hydrodynamic-type equations,

uiτ =
n∑

j=1

Ai
j (u, t, x)u

j
x i = 1, 2, . . . , n (2.2)
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where we assume that the unknowns ui depend upon an additional independent variable τ

related to each flow (2.2). Here only the unknowns ui are supposed to be transformed by
the flow (2.2), while the independent variables t, x are invariant, satisfying the equalities
tτ = 0, xτ = 0. We say that the flows (2.1) and (2.2) commute if the compatibility conditions
uitτ = uiτ t are satisfied identically for i = 1, . . . , n as a consequence of equations (2.1)
and (2.2). We can regard such flows as generalized symmetries and call them hydrodynamic
symmetries in the sense that the flows (2.2) leave the original system (2.1) invariant (since
the flow (2.1) does not depend on τ ). Such an interpretation is also possible for usual Lie
symmetries such as point symmetries or higher-order symmetries. In these cases the flows
(2.2) are Lie equations of the corresponding one-parameter symmetry groups [28, 29]. We
mention that point symmetries are generated by the vector fields of the form

X̂ = ξ(x, t, u)∂x + η(x, t, u)∂t +
n∑

j=1

φj (x, t, u)∂uj (2.3)

and for these the flow equations (2.2) are

uiτ = −ξ(x, t, u)uix − η(x, t, u)uit + φi(x, t, u). (2.4)

Thus, hydrodynamic symmetries are point symmetries only if we haveAi
j (x, t, u) ≡ A(x, t, u)

for all i and j . Hydrodynamic-type systems of the general form (2.1) do not admit a symmetry
group of point transformations apart from the obvious translational symmetry in x. However,
under certain conditions, which are obtained below, equations (2.1) do admit an infinite
continuous set of commuting flows which cannot be interpreted as Lie equations for their
local symmetries. Nevertheless, one can understand them as generalized symmetries of this
system because the flows leave the original system (2.1) invariant. Furthermore, we can apply
these symmetries to obtain families of new solutions from known ones. Indeed, let ϕ(x, t) be
a solution of the system (2.1) and let us solve the Cauchy problem for the system (2.2) with
the initial condition ui(x, t, τ )|τ=0 = ϕi(x, t). The solution u(x, t, τ ) of this Cauchy problem
presents a one-parameter family of solutions of the original system (2.1) which are generated
by the flow (2.2) from the known solution ϕ(x, t). This manner of generating new solutions
is similar to the standard application of Lie symmetries of differential equations. Another
important application of Lie symmetries is symmetry reduction, i.e. the search for invariant
solutions. We can also use generalized symmetries generated by the hydrodynamic flows (2.2)
for this purpose by imposing the constraint uiτ = 0 and simultaneously solving equations (2.1)
and (2.2).

2.2. Conditions for the existence of an infinite-dimensional algebra of flows

Let us search for hydrodynamic flows of the form (2.2) leaving x and t invariant, i.e.
xτ = 0, tτ = 0, and commuting with the diagonal explicitly t-dependent hydrodynamic-
type system (2.1), subject to the non-degeneracy condition vi �= vj for i �= j . We calculate the
left-hand side of the equality uitτ − uiτ t = 0 by differentiating equations (2.1) and (2.2) with
respect to τ and t , respectively, and then using the original equations to exclude derivatives in
t and τ . We end up with equations for Ai

j (u, t, x) with arbitrary fixed vi(u, t) involving only
derivatives in x of the unknowns ui up to the second order {uix, uixx}. The functions vi(u, t)
and Ai

j (u, t, x) do not depend upon the derivatives uix, u
i
xx and hence the coefficients of the

terms with different dependences on the derivatives must be zero. This results in a splitting
of the compatibility conditions uitτ = uiτ t for each value of i into a set of equations for Ai

j

which do not contain any derivatives of ui in x. The coefficients multiplying terms involving
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uixx must vanish. This implies that the matrix Ai
j must be diagonal Ai

j = δijAi , where δij
is the Kronecker symbol. Hence the hydrodynamic flows (2.2) commuting with the original
diagonal flow (2.1) must be diagonal

uiτ = Ai(u, t, x)u
i
x i = 1, 2, . . . , n. (2.5)

Putting coefficients of the terms bilinear in uix equal to zero, we obtain the equalities

vi,uj (Aj − Ai) = Ai,uj (vj − vi) j �= i. (2.6)

This leads us in a natural way to consider the quantities

ciij (u, t) = vi,uj (u, t)

vj (u, t) − vi(u, t)
i �= j. (2.7)

Their geometrical meaning is that they constitute a family of connection coefficients of a
fibering associated with the system (2.1) which depends upon the parameter t . In the case
when the system (2.1) does not depend explicitly on t , the connection coefficients �i

ij (u)

(independent of t) were introduced by Tsarev (see [4] and references therein). In our t-
dependent case these quantities also arise as initial values for t = 0 of our family of connection
coefficients

�i
ij (u) = ciij (u, 0) j �= i. (2.8)

With this notation equations (2.6) take the form

Ai,uj (u, t, x) = ciij (u, t)(Aj − Ai) j �= i. (2.9)

A further set of equations for Ai is obtained when we set equal to zero the coefficients of the
terms linear in uix

Ai,t (u, t, x) = vi(u, t)Ai,x(u, t, x) i = 1, 2, . . . , n. (2.10)

A complete analysis of compatibility conditions of the two systems (2.9) and (2.10) is too
lengthy to be presented here. In the remaining part of this section we only present the final
results of this analysis in the generic case. By this we mean that all necessary restrictions were
imposed on the coefficients of the original system (2.1) in order to keep maximal freedom for
the coefficients Ai of the flows (2.5).

The main result is stated in the following theorem (preliminary results were obtained in
the preprint [7]).

Theorem 2.1. The diagonal n-component hydrodynamic-type system (2.1) with an explicit
t dependence admits an infinite set of hydrodynamic symmetries of the form (2.2) with a
functional arbitrariness if its coefficients satisfy the condition (for n � 3)[

vi,uj (u, t)

vj (u, t) − vi(u, t)

]
uk

=
[

vi,uk (u, t)

vk(u, t) − vi(u, t)

]
uj

⇐⇒ ci
ij,uk

(u, t) = ci
ik,uj

(u, t)

i �= j �= k �= i (2.11)

and the condition[
vi,uj (u, t)

vj (u, t) − vi(u, t)

]
t

= −βvi,uj (u, t) ⇐⇒ ciij,t (u, t) = −β
(
vj − vi

)
ciij (u, t) i �= j

(2.12)
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where β is an arbitrary (real) constant. These symmetries are generated by the hydrodynamic
flows (2.5) with coefficients Ai defined by the formulae

Ai(u, t, x) = wi(u) exp

{
β

[
x +

∫ t

0
vi(u, t) dt

]}
+ C (2.13)

(for β �= 0),

Ai(u, t, x) = wi(u) + C

[
x +

∫ t

0
vi(u, t) dt

]
(2.14)

(for β = 0), where C is an arbitrary constant. The integrations over t are performed for a
constant value of u. Here the set of functions {wi(u)} constitutes an arbitrary smooth solution
of the linear system

wi,uj (u) = �i
ij (u)

(
wj − wi

)
i �= j (2.15)

with the coefficients �i
ij defined by the formulae (2.8) and (2.7).

The solution manifold of the system (2.15) depends upon n arbitrary functions ci(ui) of one
variable which locally parametrize the set of hydrodynamic flows.

The following remarks are in order.

(a) The condition (2.11) entails the local existence of a vector potential φi(u, t) satisfying the
equalities

ciij (u, t) = φi,uj (u, t) i, j = 1, 2, . . . , n. (2.16)

(b) The condition (2.11) in view of the definition (2.7) for ciij (u, t) implies (for n � 3) the
following equalities:

ci
ij,uk

(u, t) = ciikc
k
kj + ciij

(
c
j

jk − ciik
)

i �= j �= k �= i (2.17)

that also imply equations (2.11).
(c) For t = 0 equations (2.17) reduce to

�i
ij,uk

(u) = �i
ik�

k
kj + �i

ij

(
�
j

jk − �i
ik

)
i �= j �= k �= i. (2.18)

(d) The condition (2.12) determines the explicit t dependence of the coefficients ciij (u, t) (i �=
j):

ciij (u, t) = �i
ij (u) exp

{
−β

∫ t

0

[
vj (u, t) − vi(u, t)

]
dt

}
.

(e) We can use the freedom in the definitions (2.7) and (2.16) of the functions ciij and φi to
transform the condition (2.12) to a simpler form:

φi,t (u, t) = −βvi(u, t) i = 1, 2, . . . , n. (2.19)

(f) For two-component systems (n = 2) the first condition (2.11) of theorem 2.1 (and also
equations (2.17) and (2.18)) must be omitted and hence only the second condition (2.12)
is taken into account.

We mention that the results obtained, as well as all the results obtained below in sections 3–
6, can be easily transferred from explicitly t-dependent systems (2.1) to the explicitly x-
dependent systems

uit = vi(u, x)u
i
x i = 1, 2, . . . , n. (2.20)

This system can be transformed to the form (2.1) by a simple change of notation

t �→ x x �→ t vi(u, x) �→ 1

vi(u, t)
. (2.21)
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3. Invariant solutions and linearizing transformations

The conditions determining invariant solutions of explicitly t-dependent systems (2.1), subject
to the ‘non-singularity’ constraint: uix �= 0, are obtained by putting uiτ = 0 in equations (2.5)
determining the commuting hydrodynamic flows. They have the form Ai(u, t, x) = 0 with
the functions Ai defined by the formulae (2.13) or (2.14). Hence we obtain (for C = 1 and
i = 1, 2, . . . , n):

β �= 0: wi(u) + exp

{
−β

[
x +

∫ t

0
vi(u, t) dt

]}
= 0 (3.1)

β = 0: wi(u) + x +
∫ t

0
vi(u, t) dt = 0. (3.2)

Here the set of functions wi(u) is an arbitrary smooth solution of the linear system (2.15).
Thus the equalities (3.1) and (3.2) determine linearizing transformations for the t-dependent
system (2.1): solving this system reduces to solving the linear system (2.15). These equalities
determine the whole non-singular solution manifold ui = ui(x, t) of the original nonlinear
system, i.e. its ‘general solution’, if the conditions of the implicit-function theorem are satisfied,
i.e. the Jacobian determinant det(wi,uj (u)) is non-zero. Then the equalities (3.1) and (3.2) can
be solved with respect to u in the general form

ui = fi(r
1, r2, . . . , rn) i = 1, 2, . . . , n (3.3)

which determines the implicit solution in the form of Riemann waves with Riemann invariants
ri

ri = x +
∫ t

0
vi(u, t) dt i = 1, . . . , n. (3.4)

A number of attempts to generalize the Riemann invariant method and its various applications
can be found in the recent literature on the subject (see, e.g., [27, 30–33] and references
therein).

Thus for the considered hydrodynamic-type systems the general solution consists of
solutions invariant with respect to the hydrodynamic flows (2.5). Hence the existence
of linearizing transformations has a group-theoretical reason: the equations admit an
infinite continuous set of hydrodynamic symmetries generated by the flows (2.5) and the
degree of generality of these symmetries is the same as that of the general solution of
equation (2.1).

In the remaining part of this section we prove that the invariant solutions actually exist, i.e.
that the equalities (3.1) and (3.2) are compatible with the original hydrodynamic-type system.
We shall do this explicitly only for equation (3.2), i.e. in the case β = 0. In the case β �= 0
the proof is similar.

First, we take the difference of equation (3.2) and the same equation with i replaced by
j �= i

wj − wi =
∫ t

0
[vi(u, t) − vj (u, t)] dt. (3.5)
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Then we take the derivatives of equation (3.2) with respect to t and x (taking the dependence
of ui on t and x into account)

n∑
j=1

wi,uj u
j
t + vi(u, t) +

n∑
j=1

u
j
t

∫ t

0
vi,uj (u, t) dt = 0

n∑
j=1

wi,uj u
j
x + 1 +

n∑
j=1

ujx

∫ t

0
vi,uj (u, t) dt = 0.

(3.6)

Next we use the linear equations (2.15) to exclude the derivatives of wi in equation (3.6).
Similar equations for vi follow from the definitions (2.7) and (2.8) in the case of β = 0

vi,uj (u, t) = �i
ij (u)(vj − vi) j �= i. (3.7)

Equation (3.5) is used to exclude the differences wj − wi . The result is that all non-diagonal
terms cancel and equations (3.6) decouple and are easily solved with respect to the derivatives
of ui

uit = − vi(u, t)

wi,ui (u) +
∫ t

0 vi,ui (u, t) dt
uix = − 1

wi,ui (u) +
∫ t

0 vi,ui (u, t) dt
. (3.8)

Substituting these expressions into equations (2.1) we see that they are identically satisfied.
Equations (3.8) are meaningful if the denominators on the right-hand side are non-zero.

The conditions

wi,ui (u) +
∫ t

0
vi,ui (u, t) dt �= 0 i = 1, . . . , n (3.9)

coincide with the conditions of the implicit function theorem, applied to equation (3.2) (i.e.
the condition for ui(x, t) to be determined implicitly by equation (3.2)).

The results of this section can be summed up as follows. If the conditions of theorem 2.1 are
satisfied, then we can obtain an infinite set of hydrodynamic symmetries by solving the linear
system (2.15) forwi(u

1, . . . , un). Once the solutionsw1, . . . , wn are known, then the relations
(3.1) for β �= 0, or (3.2) for β = 0, constitute an implicit solution of the hydrodynamic-type
equations (2.1).

4. Recursions of symmetries and exact solutions

We define a recursion operator as an operator which maps any symmetry of a given system into
a symmetry of the same system. In our case there exists a restriction of this operator onto the
linear subspace of hydrodynamic symmetries generated by equations (2.5) with coefficients
which depend upon the choice of solution of the linear system (2.15) [7–11]. The action of
this operator is reduced to a transformation of the original solution {wi(u)} of equations (2.15)
into some new solution {ŵi(u)}. This recursion of the solutions, applied to the linearizing
transformations, gives rise to a recursion of solutions of the given nonlinear system (2.1). We
shall call the order of recursion the maximal order of the derivatives of wi(u) involved in the
recursion formula.

4.1. First-order recursion

Let us define the functions (i = 1, 2, . . . , n):

Si(u) =
n∑

k=1

�i
ik(u)ck(u

k) + di(u
i). (4.1)

They depend upon 2n functions ci(ui), di(ui) of one variable each.
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Theorem 4.1. Let the system (2.1) satisfy the conditions of theorem 2.1. Then there exists a
first-order recursion of its hydrodynamic symmetries and hence a recursion of solutions of the
linear system (2.15), iff there exist 2n functions ci(ui), di(ui) of one variable which satisfy the
conditions

Si,uj (u) = �i
ij (u)(Sj − Si) i �= j (4.2)

with the functionsSi(u)defined by equations (4.1). This recursion is determined by the formula:

ŵi(u) = ci(u
i)wi,ui (u) + di(u

i)wi(u) +
n∑

k=1

�i
ik(u)ck(u

k)wk(u). (4.3)

For hydrodynamic-type systems independent of t and x this result was obtained by Teshukov
[34].

Corollary 4.1. For any solution {wi(u)} of the linear system (2.15) with coefficients �i
ij (u)

satisfying equalities of the form (2.11)

�i
ij,uk

(u) = �i
ik,uj

(u) i �= j �= k �= i (4.4)

the functions ŵi(u) of equation (4.3) also form a solution of this system iff the conditions (4.2)
are satisfied.

The following remark is in order. The linearizing transformations (3.1) and (3.2) reduce
the search for any ‘non-singular’ solution of the nonlinear system (2.1) to a search for a solution
of the linear system (2.15). However, the integration of linear equations (2.15) with variable
coefficients can also pose a problem. The existence of a recursion for symmetries allows one
to obtain new solutions of this linear system from old ones and hence to obtain new solutions
of nonlinear hydrodynamics-type systems.

4.2. Second-order recursion

Let us define the ‘connection potential’ V (u) by a completely integrable (in the Frobenius
sense) system:

Vuiuj (u) = �i
ij�

j

ji i �= j. (4.5)

Its solution V (u) depends upon n arbitrary functions of one variable. The integrability
conditions for the system (4.5) are satisfied by virtue of the semi-Hamiltonian property (4.4).

Let us define the functions

bik(u) = fk(u
k)
[
�i
ik

(
2�k

kk − �i
ik

)− �i
ik,uk

]
+
[
ck(u

k) − f ′
k(u

k)
]
�i
ik i �= k (4.6)

bii(u) = fi(u
i)
[
�i
ii,ui

+
(
�i
ii

)2 − 2Vuiui (u)
]

− f ′
i (u

i)Vui (u) + ci(u
i)�i

ii + di(u
i) (4.7)

Bi(u) =
n∑

k=1

bik(u) (4.8)

which depend upon 3n functions fi(ui), ci(ui), di(ui) of one variable each.

Theorem 4.2. Let the system (2.1) satisfy the conditions of theorem 2.1. Then there exists
a second-order recursion of the hydrodynamic symmetries (of solutions of the linear system
(2.15)) iff there exist 3n functions fi(u

i), ci(ui), di(ui) of one variable which satisfy the
conditions

Bi,uj (u) = �i
ij (u)(Bj − Bi) i �= j (4.9)
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with the functions Bi(u) defined by equations (4.6)–(4.8). This recursion is determined by the
formula (i = 1, 2, . . . , n):

ŵi(u) = fi(u
i)wi,uiui +

[
2fi(u

i)�i
ii + ci(u

i)
]
wi,ui +

∑
k �=i

fk(u
k)�i

ikwk,uk +
n∑

k=1

bik(u)wk

(4.10)

where the functions bik(u) are defined by the formulae (4.6) and (4.7).

Hence for any solution {wi(u)} of the linear system (2.15) the formula (4.10) also gives a
solution {ŵi(u)} of this system if and only if the conditions (4.9) are satisfied.

Theorem 4.3. If a first-order recursion operator exists then there also exists a second-order
recursion operator equal to the squared first-order recursion operator. The inverse is not
true, i.e. existence conditions (4.2) for first-order recursions do not follow from the existence
conditions (4.9) for second-order recursion operators.

This means that the existence conditions for second-order recursions are less restrictive
than those for first-order ones.

The second-order recursion operator for systems of the form (2.1), but independent of t
(and x), and theorem 4.3 were obtained earlier [8, 10].

5. Generation of an infinite series of exact solutions

To obtain explicit formulae for invariant solutions of the nonlinear system (2.1) one must search
for solutions of the linear system (2.15) and substitute these solutions for a set of functions
{wi(u)} in the linearizing transformations (3.1) or (3.2).

The linear system (2.15) has two trivial solutions:

wi = 1 wi = v0
i (u) i = 1, 2, . . . , n (5.1)

where v0
i (u) = vi(u, 0). They serve as starting elements for generating infinite series of

non-trivial solutions by means of a repeated application of the recursion operators.
Specifically, let us assume that a first-order recursion (4.3) exists for solutions of

equations (2.15), i.e. the conditions (4.2) are satisfied. We can write it in the operator form:

ŵi(u) = (R1[w])i =
n∑

k=1

(R1)ik[wk] (5.2)

with the first-order operator R1 defined as

(R1)ik = δik

[
ci(u

i)
∂

∂ui
+ di(u

i)

]
+ �i

ik(u)ck(u
k). (5.3)

The two trivial solutions (5.1) are mapped by the operator R1 into non-trivial solutions of
the system (2.15):

ŵi(u) = (R1[1])i =
n∑

k=1

�i
ik(u)ck(u

k) + di(u
i) ≡ Si(u) (5.4)

ŵi(u) = (
R1[v0]

)
i
= ci(u

i)v0
i,ui

(u) + di(u
i)v0

i (u) +
n∑

k=1

�i
ik(u)ck(u

k)v0
k (u). (5.5)
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Substituting these expressions for wi(u) into the linearizing transformations (3.1) or (3.2)
we obtain explicit formulae for the non-trivial solutions of the system (2.1). In particular, if the
coefficients vi in equation (2.1) depend on u alone, we obtain the solutions (i = 1, 2, . . . , n):

n∑
k=1

�i
ik(u)ck(u

k) + di(u
i) = tvi(u) + x (5.6)

ci(u
i)vi,ui (u) + di(u

i)vi(u) +
n∑

k=1

�i
ik(u)ck(u

k)vk(u) = tvi(u) + x. (5.7)

These equalities determine exact solutions of such a system as implicit functions ui = ui(x, t).
A repeated action of the operator R1 upon the trivial solutions (5.1)

wi = (
RN

1 [1]
)
i

wi = (
RN

1 [v0]
)
i

and the use of these expressions for wi in linearizing transformations generates explicit
formulae for two infinite series of exact invariant solutions of t- and x-dependent systems.
In particular, for t- and x-independent systems they have the form (N = 1, 2, . . .):(

RN
1 [1]

)
i
= tvi(u) + x

(
RN

1 [v]
)
i
= tvi(u) + x. (5.8)

Now assume that the less restrictive conditions (4.9) are met for the existence of a second-order
recursion. Then the recursion (4.10) is valid for solutions of the linear system (2.15). We write
it again in the operator form

ŵi(u) = (R2[w])i =
n∑

k=1

(R2)ik[wk] (5.9)

with the second-order operator

(R2)ik = δik

{
fi(u

i)
∂2

(∂ui)2
+
[
fi(u

i)�i
ii(u) + ci(u

i)
] ∂

∂ui

}
+ fk(u

k)�i
ik(u)

∂

∂uk
+ bik(u)

(5.10)

and the functions bik(u) defined by equations (4.6) and (4.7). The trivial solutions (5.1) are
mapped by the operator R2 to the non-trivial solutions of the system (2.1) (i = 1, 2, . . . , n):

ŵi = (R2[1])i ≡
n∑

k=1

bik(u) ≡ Bi(u)

ŵi = (R2[v0])i ≡ fi(u
i)v0

i,uiui
(u) +

[
2fi(u

i)�i
ii(u) + ci(u

i)
]
v0
i,ui

(u)

+
∑
k �=i

fk(u
k)�i

ik(u)v
0
k,uk

(u) +
n∑

k=1

bik(u)v
0
k (u).

(5.11)

Substituting these expressions for wi(u) into the linearizing transformations (3.1) and (3.2)
we obtain explicit formulae for the non-trivial solutions of the system (2.1).

In particular, for t- and x-independent systems we obtain the solutions (i = 1, 2, . . . , n):

n∑
k=1

bik(u) ≡ Bi(u) = tvi(u) + x

fi(u
i)vi,uiui (u) +

[
2fi(u

i)�i
ii(u) + ci(u

i)
]
vi,ui (u)

+
∑
k �=i

fk(u
k)�i

ik(u)vk,uk (u) +
n∑

k=1

bik(u)vk(u) = tvi(u) + x.

(5.12)
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The action of powers of the operator R2 upon the trivial solutions (5.1):

wi = (
RN

2 [1]
)
i

wi = (
RN

2 [v0]
)
i

and the use of these expressions for wi in linearizing transformations generates the explicit
formulae for two infinite series of exact invariant solutions of t- and x-dependent systems. In
particular, for t- and x-independent systems they have the form (N = 1, 2, . . .)(

RN
2 [1]

)
i
= tvi(u) + x

(
RN

2 [v]
)
i
= tvi(u) + x. (5.13)

We can also use linear combinations of solutions of the two series for the functions wi(u) in
linearizing transformations. For example, for t- and x-independent systems we have (with any
integer N,M):

C1
(
RN

1,2[1]
)
i

+ C2
(
R1,2[v]

)
i
= tvi(u) + x (5.14)

where R1 or R2 must be chosen and C1 and C2 are arbitrary constants.
We mention that the operators R1 and R2 coincide with the first- and second-order

symmetry operators for the linear system (2.15) essential for the separation of variables in
these equations. A solution of the system (2.15) by means of a separation of variables would
mean completely solving the original nonlinear system. Hence the combined utilization of
linearizing transformations and recursions may be considered as a transfer of the method of
separation of variables to nonlinear systems.

6. Example of solving a system admitting an infinite set of hydrodynamic symmetries

6.1. Derivation of a class of systems with an infinite set of commuting hydrodynamic flows

In this section we show how the conditions of theorem 2.1 in the case of β = 0, combined
with a natural ansatz on the form of the coefficients vi(u, t) can determine a system of the form
(2.1) admitting an infinite set of commuting hydrodynamic flows (2.5). We obtain its general
solution using hydrodynamic symmetries.

In the case of β = 0 the second set (2.12) of conditions of theorem 2.1 takes the form

ciij,t (u, t) = 0 i �= j (6.1)

which in view of the relation (2.8) means that the connection coefficients

ciij = �i
ij (u) i �= j (6.2)

do not depend explicitly on t .
The first set of conditions of theorem 2.1 is satisfied by setting

�i
ij (u) = ψi

uj
(u) i �= j (6.3)

where we introduced the connection potentials ψi(u). Using the definition (2.7) of ciij (u) and
the relations (6.2) and (6.3) we obtain

vi,uj (u, t) = ψi
uj
(u)(vj − vi) ⇐⇒ vi,uj (u, t)

vj − vi
= ψi

uj
(u) j �= i. (6.4)

The fact that the ratios (6.4) of t-dependent quantities do not depend explicitly on t implies
that the simplest natural way for the numerator and the denominator to depend on t is to have
the entire explicit t dependence in a common t-dependent factor

vi,uj (u, t) = αji(t)ψ
i
uj
(u)ω

j

i (u)

vj (u, t) − vi(u, t) = αji(t)ω
j

i (u)
j �= i. (6.5)
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The condition vi �= vj for i �= j for the system (2.1) to be strictly hyperbolic implies the
constraint

αji(t)ω
j

i (u) �= 0 for j �= i. (6.6)

The obvious relation (vk − vj ) + (vj − vi) = vk − vi yields the equalities

αkj (t)ω
k
j (u) + αji(t)ω

j

i (u) = αki(t)ω
k
i (u) i �= j �= k. (6.7)

There are only two simple ways to satisfy these equations.

(a) To have a common factor depending on u on the left-hand side of equations (6.7)

ωk
j (u) = ω

j

i (u) = ωk
i (u) ≡ ω(u) i �= j �= k. (6.8)

(b) To have a common factor depending on t on the left-hand side of equations (6.7)

αkj (t) = αji(t) = αki(t) ≡ α(t) i �= j �= k. (6.9)

We drop here admissible but inessential constant factors which could be absorbed by a suitable
redefinition of αji or ωj

i .
The complete analysis of the case (b) leads to the obvious implementation of t dependence

of vi ,

vi(u, t) = v̄i (u) + C(t) (6.10)

with an arbitrary function C(t) and v̄i (u) satisfying the first set (2.11) of conditions of
theorem 2.1. Then the second set of conditions (2.12) is trivially satisfied.

We consider in detail here only case (a) which does not restrict the t dependence of the
coefficients vi(u, t), but rather their dependence on u. We assume that the functions αji(t) for
different values of the labels are not proportional to each other.

Equations (6.5) for vi(u, t) now take the form

vi,uj (u, t) = αji(t)ψ
i
uj
(u)ω(u)

vj (u, t) − vi(u, t) = αji(t)ω(u)
j �= i. (6.11)

The compatibility conditions vi,uj uk = vi,ukuj for the first set of these equations have the form

αji(t)
(
ω(u)ψi

uj
(u)
)
uk

= αki(t)
(
ω(u)ψi

uk
(u)
)
uj

i �= j �= k. (6.12)

These equalities imply the conditions(
ω(u)ψi

uj
(u)
)
uk

= 0 i �= j �= k. (6.13)

These equations have the solution

ψi
uj
(u) = 1

ω(u)
Ci
j (u

i, uj ) i �= j. (6.14)

The compatibility conditions of these equations ψi
ujuk

= ψi
ukuj

lead to the relations

Ci
jωuk − Ci

kωuj = 0 i �= j �= k. (6.15)

Using the expressions (6.14) for ψi
uj

in equations (6.11) we obtain

vi,uj (u, t) = αji(t)C
i
j (u

i, uj )

vj (u, t) − vi(u, t) = αji(t)ω(u)
j �= i. (6.16)
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Certain symmetry properties of αij follow from the second of these equations, namely

αij (t) = −αji(t) αkj (t) + αji(t) = αki(t). (6.17)

Interchanging the indices i and j in the first equation of (6.16) and substituting vj from
the second equation of (6.16) to its left-hand side leads to the result

vi,ui (u, t) + ωui (u)αji(t) = C
j

i (u
j , ui)αij (t). (6.18)

To exclude the derivative vi,ui , we take the difference of this equation with the equation obtained
by the substitution j �→ k with the result

ωui (u)(αji(t) − αki(t)) = C
j

i (u
j , ui)αij (t) − Ck

i (u
k, ui)αik(t). (6.19)

Since the different quantities αji(t) are assumed not to be proportional, this equation implies
the equalities

C
j

i (u
j , ui) = Ck

i (u
k, ui) ≡ −Ci(u

i). (6.20)

Equation (6.19) and the symmetry properties (6.17) imply the equalities

ωui (u) = Ci(u
i) ≡ a′

i (u
i) i = 1, 2, . . . , n (6.21)

where primes denote derivatives of functions of one variable. This gives the following
expression for ω(u):

ω(u) =
n∑

i=1

ai(u
i). (6.22)

Returning to the linear system (6.15), we easily check that expressions (6.20) and (6.21) satisfy
this system identically.

Substituting these expressions for ω(u) and C
j

i into equation (6.18) we obtain

vi,ui (u, t) = 0 (6.23)

which means that the system must be weakly nonlinear. In view of the formulae (6.20) and
(6.21) the first of equations (6.16) takes the form

vi,uj (u, t) = −a′
j (u

j )αji(t) j �= i. (6.24)

The two last equations completely determine the coefficients vi(u, t) of our system up to an
arbitrary term γi(t) independent of u

vi(u, t) =
∑
k �=i

αik(t)ak(u
k) + γi(t) (6.25)

where αik(t) are arbitrary functions satisfying the symmetry relations (6.17) and the functions
ak(u

k) are completely arbitrary. In order to satisfy the symmetry relations identically we put

αji(t) = αj (t) − αi(t) (6.26)

where the functions αi(t) are completely arbitrary. Substituting the expressions (6.22) and
(6.26) into the second of equations (6.16) we obtain the result

vj (u, t) − vi(u, t) = (
αj (t) − αi(t)

) n∑
l=1

al(u
l). (6.27)

Substituting the expression (6.25) for vi and (6.26) for αji into this equation we obtain

γj (t) = γi(t) ≡ γ (t) (6.28)
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and we end up with the following expression for vi :

vi(u, t) =
∑
k �=i

(
αi(t) − αk(t)

)
ak(u

k) + γ (t). (6.29)

Thus we have obtained an example of a system of the general form (2.1) which satisfies
all of the conditions of theorem 2.1

uit =
[∑
k �=i

(
αi(t) − αk(t)

)
ak(u

k) + γ (t)

]
uix i = 1, 2, . . . , n. (6.30)

There is still an unnecessary generality here because we can get rid of arbitrary functions
ak(u

k) by a transformation of the unknowns ũi = ai(u
i). Dropping the tilde we obtain the

final form of the example of a t-dependent hydrodynamic-type system which admits an infinite
set of hydrodynamic symmetries and which satisfies the conditions of theorem 2.1 in the case
when β = 0. The system is

uit =
[∑
k �=i

(
αi(t) − αk(t)

)
uk + γ (t)

]
uix i = 1, 2, . . . , n. (6.31)

It depends essentially upon n arbitrary functions of t because an overall factor depending only
on t can be eliminated by suitably redefining t . Hence we can consider only two essentially
different cases when γ = 1 or 0.

Let us now proceed with the actual task of this section, namely solving the system (6.31).

6.2. General solution of a hydrodynamic-type system with an infinite set of hydrodynamic
symmetries

Let us first calculate the hydrodynamic symmetries of the system (6.31). We substitute the
expressions (6.29) with ak(uk) = uk for the coefficients vi of this system into the formula (6.4)
determining the connection coefficients �i

ij (u) defined by equation (6.3). The result is that
they do not depend on the indices i, j

�i
ij (u) = ψi

uj
(u) = − 1∑n

k=1 u
k

i �= j. (6.32)

With these expressions for �i
ij the linear equations (2.15) for the functions wi(u) take the form

wi,uj (u) = wi − wj∑n
k=1 u

k
j �= i. (6.33)

For simplicity we introduce the notation l(u) = ∑n
k=1 u

k . Interchanging i and j in the last
equations we obtain the system

wj,ui (u) = 1

l(u)
(wj − wi) i �= j. (6.34)

Excludingwj in these equations with the aid of equations (6.33) we obtain a system of second-
order equations for each wi[

1

l(u)
wi,ui

]
uj

= 0 j �= i (6.35)

with the first integral

wi,ui (u) = l(u)b′′
i (u

i) (6.36)
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where two primes denote second derivatives and bi(u
i) are arbitrary smooth functions of one

variable ui . Integrating these equations we obtain

wi(u) = l(u)b′
i (u

i) − bi(u
i) +

∑
k �=i

cik(u
k) (6.37)

where cik(u
k) are arbitrary smooth functions of one variable. Changing i into j we obtain

the expression for wj and substitute both expressions for the derivatives of wi,wj into the
equations

wi,uj + wj,ui = 0 i �= j (6.38)

obtained by combining the systems (6.33) and (6.34). We perform a separation of variables ui

and uj in the resulting equations

b′
i (u

i) + c′
ji(u

i) = − [b′
j (u

j ) + c′
ij (u

j )
] = λij = constant i �= j (6.39)

and obtain the expressions for cik in terms of bk, λik

cik(u
k) = −bk(u

k) − λiku
k k �= i. (6.40)

Let us substitute these expressions into the formula (6.37) for wi

wi(u) = l(u)b′
i (u

i) − bi(u
i) − bj (u

j ) − λiju
j −

∑
k �=i,j

bk(u
k) −

∑
k �=i,j

λiku
k. (6.41)

We interchange i and j and obtain a formula for wj . Substituting these expressions for wi and
wj into the original linear system (6.33) we obtain the equations

λij
∑
k �=i,j

uk =
∑
k �=i,j

(λik − λjk)u
k i �= j.

Comparing coefficients of uk we obtain

λik = λij + λjk i �= j �= k. (6.42)

These symmetry conditions together with the skew symmetry property

λji = −λij

which follows from the definition (6.39) of λij , are identically satisfied by putting

λij = µi − µj

with arbitrary constants µi . We substitute these expressions for λij into the formula (6.41) for
wi and express the result in terms of the new arbitrary functions of one variable

βi(u
i) = −bi(u

i) + µiu
i. (6.43)

We obtain the final expression for the general solution wi(u) of the linear system (2.15) which
in our example has the form (6.33). The general solution of equation (6.33) is

wi(u) =
n∑

k=1

βk(u
k) − β ′

i (u
i)

n∑
k=1

uk i = 1, 2, . . . , n. (6.44)

We see that this solution depends on n arbitrary functions βk(uk) of one variable each. This
is just the right number to satisfy arbitrary Cauchy conditions for the linear system (6.33).
At least in principle that also makes it possible to satisfy arbitrary Cauchy conditions for the
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nonlinear system (6.31). Thus in our example it was possible to integrate the linear system
(2.15) completely and we did not need to use the recursions of its solutions which were derived
in the preceding section. We mention that in this example the recursions do not generate new
solutions (since we already know the general solution).

The hydrodynamic symmetries of the system (6.31) are generated by hydrodynamic flows
of the form (2.5) with the coefficients Ai(u, t, x) determined by the formula (2.14) with C = 1

uiτ =
[

n∑
k=1

βk(u
k) − β ′

i (u
i)

n∑
k=1

uk + x +
∫ t

0
vi(u, t) dt

]
uix i = 1, 2, . . . , n (6.45)

where we must substitute the expressions for the coefficients vi of the system (6.31)

vi(u, t) =
∑
k �=i

[
αi(t) − αk(t)

]
uk + γ (t). (6.46)

Invariant solutions of the system (6.31) are determined by the condition uiτ = 0 which for
the non-singular case uix �= 0 implies that the expressions in square brackets in the formula
(6.45) are equal to zero
n∑

k=1

βk(u
k) − β ′

i (u
i)

n∑
k=1

uk + x +
∑
k �=i

uk
∫ t

0

[
αi(t) − αk(t)

]
dt +

∫ t

0
γ (t) dt = 0

i = 1, . . . , n. (6.47)

In the general case in this way we obtain the linearizing transformation (3.2).
In section 3 we have already given a general proof that the equalities (3.2), determining a

linearizing transformation, are compatible with the original system (2.1) if the functions wi(u)

satisfy the linear system (2.15). Nevertheless, it is instructive to give an independent proof
that the invariant solutions (6.47) do really exist, i.e. the equalities (6.47) are compatible with
the original system (6.31) and hence they determine a general solution of the system (6.31) in
an implicit form.

At first we change i into j in the equalities (6.47) and take the difference of the new one
and the old one. After numerous cancellations we obtain

β ′
i (u

i) − β ′
j (u

j ) =
∫ t

0

[
αi(t) − αj (t)

]
dt. (6.48)

We note that these equalities coincide with the result of differentiating equations (6.47) with
respect to uj with j �= i, which means that all non-diagonal elements of the Jacobian matrix
of a system (6.47) are zero. Hence existence conditions for an implicit vector-function
u = (u1, . . . , un) determined by equations (6.47) mean that all diagonal elements of the
Jacobian matrix, must be non-zero. We obtain these elements by differentiating the left-hand
side of each of equations (6.47) with a fixed value of i with respect to ui (with the same value
of i)

−β ′′
i (u

i)

n∑
k=1

uk �= 0.

Thus we obtain the existence condition for an implicit function determined by equations (6.47)

n∏
i=1

β ′′
i (u

i) �= 0. (6.49)
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Next we differentiate equations (6.47) with respect to t and x with the results
n∑

k=1

β ′
k(u

k)ukt − β ′′
i (u

i)uit

n∑
k=1

uk − β ′
i (u

i)

n∑
k=1

ukt +
∑
k �=i

ukt

∫ t

0

[
αi(t) − αk(t)

]
dt

+
∑
k �=i

uk
[
αi(t) − αk(t)

]
+ γ (t) = 0 (6.50)

n∑
k=1

β ′
k(u

k)ukx − β ′′
i (u

i)uix

n∑
k=1

uk − β ′
i (u

i)

n∑
k=1

ukx + 1 +
∑
k �=i

ukx

∫ t

0

[
αi(t) − αk(t)

]
dt = 0.

(6.51)

Express the integral terms with the aid of equations (6.48) changing j to k. After simplifying
we obtain the equalities

β ′′
i (u

i)

n∑
k=1

uk · uit =
n∑

k=1

uk
[
αi(t) − αk(t)

]
+ γ (t) (6.52)

β ′′
i (u

i)

n∑
k=1

uk · uix = 1. (6.53)

Using the existence condition (6.49) we can solve these equations with respect to uit and uix
and substitute the results into equations (6.31). We see that they are identically satisfied which
concludes the proof that the equalities (6.47) determine a general solution of this system.

Let us sum up the results of this section. Equation (6.31) is a hydrodynamic-type
equation with infinitely many hydrodynamic symmetries. The linear equations (6.33) are
the determining equations for the hydrodynamic symmetries. The general solution of
equation (6.33) is given by equation (6.44). Equation (6.47) then gives a solution of the
original system (6.31) in implicit form. To make the solutions explicit we must choose the
arbitrary functionsβk(uk) and then solven functional equations (6.47) forn unknownsun(x, t).

7. Inhomogeneous diagonal hydrodynamic-type systems

The results obtained here for the diagonal t-dependent system (2.1), which is linear
homogeneous in the derivatives of the unknowns, can be readily generalized to hydrodynamic-
type systems with a ‘diagonal inhomogeneity’ of the formfi(u

i, t). Let us denote the unknowns
in the inhomogeneous system by r = {

ri
}
, keeping the notation u for the unknowns in the

homogeneous system. Such an inhomogeneous t-dependent system has the form

rit = ki(r, t) r
i
x + fi(r

i, t) i = 1, 2, . . . , n. (7.1)

The following statement can be easily proved.

Assertion 7.1. A t-dependent transformation ri = Ri(u
i, t), i = 1, . . . , n, reduces the system

(7.1) to the homogeneous diagonal system (2.1) iff it satisfies the ordinary differential equations

dRi

dt
= fi(Ri, t) i = 1, 2, . . . , n. (7.2)

Let Ri = Ri(Ci, t) be a general solution and Ui(Ri, t) = Ci be a general integral for the ith
equation (7.2) with an arbitrary constant Ci . Then ri = Ri(u

i, t) is the transformation of the
system (7.1) to the homogeneous system (2.1) and ui = Ui(r

i, t) is its inverse transformation.
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These results take a more explicit form in the specific case when the inhomogeneities fi
do not depend explicitly on t or x: fi = fi(r

i). The explicitly t-dependent system (7.1) takes
the form

rit = ki(r, t) r
i
x + fi(r

i) i = 1, 2, . . . , n. (7.3)

Consider the generic case
∏n

i=1 fi(r
i) �= 0. The differential equations (7.2) can be integrated in

quadratures and we obtain an explicit form of the transformation to its characteristic variables
ui which reduce this system to the form (2.1):

ui =
∫

dri

fi(ri)
− t i = 1, 2, . . . , n. (7.4)

It may happen, in particular, that the resulting homogeneous system would be explicitly
independent of t and x.

It is clear now that existence conditions for an infinite set of hydrodynamic symmetries
for the system (2.1), the explicit form of the commuting hydrodynamic flows and linearizing
transformations, obtained in preceding sections, are readily transferred to the inhomogeneous
systems (7.1).

8. Hydrodynamic-type equations with n space variables

Our next objective is to establish the relation between the symmetry group analysis of
differential equations and the classical method of Riemann invariants in the multidimensional
case of n space variables. We consider a very particular type of such a hydrodynamic-type
system

uit +
n∑

j=1

aj (u, t)ui
xj

= 0 i = 1, 2, . . . , m (8.1)

to make this relation more straightforward. We search for point symmetries of equation (8.1)
which do not depend explicitly on x1, . . . , xn and which do not transform the unknowns
u = (u1, . . . , um). The dependent variables u are therefore included in the set of invariants.
Thus, we search for symmetry generators of the particular form

X = η(u, t)
∂

∂t
+

n∑
j=1

ξ j (u, t)
∂

∂xj
(8.2)

which are admitted by the system (8.1). Then Lie group analysis provides the following result
for the symmetry generator:

X = α(u, t)L +
n∑

j=1

βj (u)
∂

∂xj
(8.3)

where L is the linear differential operator

L = ∂

∂t
+

n∑
j=1

aj (u, t)
∂

∂xj
(8.4)

and α(u, t), βj (u) are arbitrary functions. We note that the prolongation L̂ of the operator L

L̂ = Dt +
n∑

j=1

aj (u, t)Dxj (8.5)
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where Dt and Dxj denote the operators of total derivatives in t and xj , respectively, figures in
equations (8.1) so that they can be rewritten as

L̂ui = 0 i = 1, 2, . . . , m. (8.6)

Since invariant solutions must depend only on invariants we need to obtain a set of all
functionally independent invariants. They are determined by the invariance condition

X2 = α(u, t)2t +
n∑

j=1

(
aj (u, t)α(u, t) + βj (u)

)
2xj = 0. (8.7)

To solve it, we construct the characteristic system of ODEs

dxj

dt
= aj (u, t) +

βj (u)

α(u, t)
(8.8)

with the obvious solution

rj = xj −
∫
u=constant

[
aj (u, t) +

βj (u)

α(u, t)

]
dt = cj (8.9)

with constant cj . So, including the set of obvious invariants u, we obtain the general form of
the invariant satisfying equation (8.7) as

2 = 2(r1, r2, . . . , rn, u1, u2, . . . , um) (8.10)

where 2 is an arbitrary smooth function and its arguments form the basis, i.e. a complete set
of functionally independent invariants.

The general form of an invariant solution will hence be

ui = f i(r1, r2, . . . , rn) i = 1, 2, . . . , m (8.11)

where both ui and rj are invariant under the point group generated by the vector field (8.3).
Following the standard method of symmetry reduction, we substitute the reduction formula
(8.11) into the original equations (8.1). We obtain the reduced system of differential equations

n∑
j=1

βj (u)
∂f i

∂rj
(r1, . . . , rn) = 0 i = 1, . . . , m. (8.12)

The functions βj (u) are really functions of the invariants ri , since we must use equation (8.11)
to express u as an argument of βj in terms of ri . Thus equation (8.12) is a system of m
differential equations for m functions f i(r1, . . . , rn). These equations are still nonlinear, like
the original equations (8.1). The reduction is in the fact that (8.1) involves n + 1 independent
variables, namely (t, x1, . . . , xn), whereas equation (8.12) involves only n independent
variables, namely (r1, . . . , rn). Once equation (8.12) is solved and the functions f j are
known, then equation (8.11) determines the functions ui(t, x1, . . . , xn) implicitly.

Let us now discuss the degree of freedom in the obtained solutions. The variables rj are
Riemann invariants [15] and the functions βj (u) and α(u, t) in them are a priori arbitrary.
However, equation (8.12) is a first-order differential constraint on the functions f i(�r). The
extent to which equation (8.12) constrains these functions depends on the dimension of the
space spanned by the vectors

γ1 = f,r1 . . . γn = f,rn γi ∈ Rm i = 1, . . . , n. (8.13)
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In particular, if all of these vectors are linearly independent, then we must have βj (u) = 0,
j = 1, . . . , n. The expression for the Riemann invariants then simplifies to

rj = xj −
∫
u=constant

aj (u, t) dt j = 1, . . . , n. (8.14)

The variables rj in this case are completely specified, but the functions f i(�r) are completely
arbitrary. Vice versa, if the set of vectors (8.13) is not linearly independent, then some of the
functions βj (u) will be free. These functions will figure in the variables rj , via equation (8.9).
The functions f i are then constrained by equation (8.12).

Let us now discuss the connection between the symmetry reduction method described
above and the generalized method of characteristics [35] for a homogeneous first-order
quasilinear system:

n∑
µ=0

Aµ(u, x0)
∂u

∂xµ
= 0 (8.15)

where Aµ are, in general, some m × m matrix functions. In our example (8.1) they are all
proportional to the identity matrix I:

A0 = I A1 = a1(u, x0)I · · · An = an(u, x0)I. (8.16)

Here we denote the independent variables by x = (x0 = t, x1, . . . , xn).
The methodological approach assumed in the generalized method of characteristics [30]

is an algebraization of the partial differential equations (8.15). We assume that there exists
a set of real-valued functions ξ, λ0, . . . , λn, γ

1, . . . , γ m, such that all derivatives of ui with
respect to xµ are decomposable as follows:

∂ui

∂xµ
= ξλµγ

i i = 1, . . . , m µ = 0, . . . , n. (8.17)

The function ξ(x) depends on x alone, λµ and γ i depend on x0 directly and also through the
dependent variables u. Substituting (8.17) into equation (8.15) we obtain

n∑
µ=0

m∑
i=1

(
λµ(A

µ)si
)
γ i = 0 s = 1, . . . , m. (8.18)

The necessary and sufficient condition for the existence of a non-trivial solution γ =
(γ 1, . . . , γ m) of equation (8.18) is

det

(
n∑

µ=0

λµ(A
µ)si

)
= 0 ⇐⇒

n∑
µ=0

λµa
µ = 0 a0 = 1. (8.19)

First, we must find the ‘wavevectors’ λ = (λ0, λ1, . . . , λn) such that (8.19) holds. For each
such vector we find the ‘polarization vector’ γ satisfying equation (8.18).

In our case the linearly independent wavevectors λl admitted by equations (8.15) have the
form

λ1 = (−a1(u, x0), 1, 0, . . . , 0
) · · · λn = (−an(u, x0), 0, . . . , 0, 1

)
(8.20)

and satisfy the conditions

n∑
µ=0

λlµa
µ = 0 l = 1, . . . , n. (8.21)
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Equations (8.21) are n independent relations between the coefficients a0, . . . , an. Relations
(8.21) imply that the vectors γl are arbitrary, since equations (8.18) are solved identically. The
construction of a Riemann n-wave requires that the distribution of linearly independent vector
fields {γ1, . . . , γn} be Abelian (in the Frobenius sense) [27, 30, 36]. This is satisfied in our
case.

We obtain a surface S given by equation (8.11) parametrized by n parameters r1, . . . , rn.
It satisfies the system

∂f i

∂rj
= γ i

j (f
1, . . . , f m) (8.22)

however, since the vectors γl are arbitrary, the functions f i are also arbitrary.
We now take the differential df of equation (8.11) and use equation (8.17), use the linear

independence of the vectors (γ1, . . . , γn) and obtain

drj =
n∑

µ=0

ξ(x)λjµ(r
1, . . . , rn, x0) dxµ. (8.23)

The general integral of this Pfaffian system coincides with the group invariants (8.14), once
equations (8.20) are taken into account.

Thus the relation between symmetry reduction and the generalized method of
characteristics for equation (8.1) is established.

9. Conclusions

The hydrodynamic flows used in section 2 are generalized symmetries, in the sense that they are
neither point, nor contact ones. However, they share an important property of these symmetries:
they depend only on first derivatives of the dependent variables, moreover the dependence is
linear. They turn out to be very useful for solving hydrodynamic-type equations. Indeed, we
have shown that if a system allows an infinite set of hydrodynamic symmetries, it is linearizable.
The linearization provides us with very general solutions of the original nonlinear system.
Indeed, the solution of equation (2.1) obtained in this manner will depend on n arbitrary
functions of one variable. This is just the right amount of generality needed to satisfy arbitrary
Cauchy conditions (though this does not exclude the existence of other solutions, not obtainable
in this manner).

The linearization via hydrodynamic symmetries is not equivalent to the existence of a Lax
pair, nor is it a ‘direct linearization’, meaning an invertible transformation of variables, taking
a nonlinear equation into a linear one.

What is happening is that the (linear) determining equations for the symmetries have a
very general set of solutions. It is so general that the method of symmetry reduction leading
to invariant solutions, provides virtually all solutions of the system.

This linearization was obtained by Tsarev [3, 4] for hydrodynamic-type equations with
time- and coordinate-independent coefficients. We have generalized the result to include the
dependence on x and t . Moreover, we have provided an explicit group-theoretical basis for
the linearization, opening the way for further generalizations and applications.

The conditions of theorem 2.1, necessary and sufficient for the existence of infinitely
many symmetries, are quite restrictive. This is not surprising since we know that ‘interesting’
linearizable nonlinear equations are rare. The example of section 6 shows that the set of such
equations is not empty. Indeed, we have provided a family of such equations depending on n

functions of time (see equation (6.31)).
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Finally, we mention that the set of hydrodynamic symmetries may be smaller, i.e. finite,
or depending on fewer arbitrary functions. Even then these symmetries can be used to
obtain special solutions via symmetry reduction, or via a simultaneous solution of the original
equations and the additional commuting flows.
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and FCAR du Québec. MBS thanks the Centre de recherches mathématiques, Université
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